Chaos-induced pulse trains in the ionization of hydrogen.
نویسندگان
چکیده
We predict that a hydrogen atom in parallel electric and magnetic fields, excited by a short laser pulse to an energy above the classical saddle, ionizes via a train of electron pulses. These pulses are a consequence of classical chaos induced by the magnetic field. We connect the structure of this pulse train (e.g., pulse size and spacing) to fractal structure in the classical dynamics. This structure displays a weak self-similarity, which we call "epistrophic self-similarity." We demonstrate how this self-similarity is reflected in the pulse train.
منابع مشابه
Chaotic ionization of a highly excited hydrogen atom in parallel electric and magnetic fields
We present results of our simulations of the ionization of a hydrogen atom excited to a Rydberg wave packet in the presence of external parallel electric and magnetic fields. This is an example of an open, quantum system whose classical counterpart has been shown to display chaos in the time domain. Within the framework of classical mechanics, electrons escape through chaos induced pulse trains...
متن کاملAnalysis of a Quantized Chaotic System
We consider quantized chaotic dynamics for a spiking oscillator with two periodic inputs. As the first input is applied, the oscillator generates various periodic and chaotic pulse-trains governed by a pulse position map. As the second input is added, the oscillator produces pulse positions restricted on a lattice, and the pulse position map is quantized. Then the oscillator generates a set of ...
متن کاملField-ionization threshold and its induced ionization-window phenomenon for Rydberg atoms in a short single-cycle pulse
We study the field-ionization threshold behavior when a Rydberg atom is ionized by a short single-cycle pulse field. Both hydrogen and sodium atoms are considered. The required threshold field amplitude is found to scale inversely with the binding energy when the pulse duration becomes shorter than the classical Rydberg period, and, thus, more weakly bound electrons require larger fields for io...
متن کاملReturn Map Quantization from an Integrate-and-Fire Model with Two Periodic Inputs
In this paper, we consider the Integrate-andFire Model (ab. IFM) with two periodic inputs. The IFM outputs a pulse-train which is governed by a one dimensional return map. Using the return map, the relationship between the inputs and the output is clarified: the first input determines the global shape of the return map and the IFM outputs various periodic and chaotic pulse-trains; the second in...
متن کاملCalculation of the triple and double cross sections in the proton-hydrogen impact at the ionization channel by removing singularity in the scattering amplitudes
In the present work, the triple and double cross sections of atomic hydrogen ionization in collision with the proton are calculated. The potential of the interaction is considered as a Coulombic; also, the first and second order Born approximations have been used. The singularity of the Green operator in the second order approximation has been removed for the analytical solution of the scatt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 92 7 شماره
صفحات -
تاریخ انتشار 2004